大家在制定教案时,应该注意教学内容的连贯性,通过与同事分享教案,我们可以互相学习,共同进步,以下是大学生范文网小编精心为您推荐的幂函数的教案最新7篇,供大家参考。
幂函数的教案篇1
知识技能目标
1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2、利用反比例函数的图象解决有关问题。
过程性目标
1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。
二、探究归纳
1、画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。
解
1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。
3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线。
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。
学生讨论、交流以下问题,并将讨论、交流的结果回答问题。
1、这个函数的图象在哪两个象限?和函数的图象有什么不同?
2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有下列性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当kt;0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
注
1、双曲线的两个分支与x轴和y轴没有交点;
2、双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。
三、实践应用
例1若反比例函数的图象在第二、四象限,求m的值。
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1t;0,由这两个条件可解出m的值。
解由题意,得解得。
例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。
分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此kt;0,而一次函数y=kx—k中,kt;0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。
解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以kt;0,所以一次函数y=kx—k的图象经过一、二、四象限。
例3已知反比例函数的图象过点(1,—2)。
(1)求这个函数的解析式,并画出图象;
(2)若点a(—5,m)在图象上,则点a关于两坐标轴和原点的对称点是否还在图象上?
分析
(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上。
解(1)设:反比例函数的解析式为:(k≠0)。
而反比例函数的图象过点(1,—2),即当x=1时,y=—2。
所以,k=—2。
即反比例函数的解析式为:。
(3)点a(—5,m)在反比例函数图象上,所以,
点a的坐标为。
点a关于x轴的对称点不在这个图象上;
点a关于y轴的对称点不在这个图象上;
点a关于原点的对称点在这个图象上;
例4已知函数为反比例函数。
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当—3≤x≤时,求此函数的最大值和最小值。
解(1)由反比例函数的定义可知:解得,m=—2。
(2)因为—2t;0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;
当x=—3时,y最小值=。
所以当—3≤x≤时,此函数的最大值为8,最小值为 。
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象。
解(1)因为100=5xy,所以。
(2)x>0。
(3)图象如下:
说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质。
1、反比例函数的图象是双曲线。
2、反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当kt;0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
五、检测反馈
1、在同一直角坐标系中画出下列函数的图象:
(1);(2)。
2、已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时,?
3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。
4、已知反比例函数经过点a(2,—m)和b(n,2n),求:
(1)m和n的值;
(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1t;0t;x2,试比较y1和y2的大小。
幂函数的教案篇2
教学目标:使学生对反比例函数和反比 例函数的图象意义加深理解。
教学重点:反比例函数 的应用
教学程序:
一、新授:
1、实例1:
(1)用含s的代数式 表示p,p是 s的反比例函数吗?为什么?
答:p=600s (s0),p 是s的反比例函数。
(2)、当木板面积为0.2 m2时,压强是多少?
答:p=3000pa
(3)、如果要求压强不超过6000pa,木板的面积至少 要多少?
答:至少0.lm2。
(4)、在直角坐标系中,作出相应的函数 图象。
(5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。
二、做一做
(1)蓄电池的电 压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8 所示。
(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?
电压u=36v , i=60k
完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10a,那么用电器的可变电阻应控制在什么范围内?
r() 3 4 5 6 7 8 9 10
i(a )
如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于a、b两点,其中点a的坐标为(3 ,23 )
(1)分别写出这两个函 数的表达式;
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;
随堂练习:
p145~146 1、2、3、4、5
作业:p146 习题5.4 1、2
幂函数的教案篇3
教学目标:
1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。
2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻
画现实世界中数量关系的一种数学模型。
教学重点运用反比例函数解决实际问题
教学难点运用反比例函数解决实际问题
教学过程:
一、情景创设
引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?
反比例函数在生活、生产实际中也有着广泛的应用。
例如:在矩形中s一定,a和b之间的关系?你能举例吗?
二、例题精析
例1、见课本73页
例2、见课本74页
例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积v(米3)的反比例函数
(1)写出这个函数解析式
(2)当气球的体积为0.8m3时,气球的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?
三、课堂练习课本p74练习1、2题
四、课堂小结反比例函数的应用
五、课堂作业课本p75习题9.3第1、2题
六、教学反思
幂函数的教案篇4
教学目标
教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.
能力训练要求:
1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.
2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
情感与价值观要求:
1.通过有趣的问题提高学习数学的兴趣.
2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.
教学重点难点:
重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.
难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.
教学过程
1、创设问题情境,引入新课:
前几节课我们学习了勾股定理,你还记得它有什么作用吗?
例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?
根据题意,(如图)ac是建筑物,则ac=12米,bc=5米,ab是梯子的长度.所以在rt△abc中,ab2=ac2+bc2=122+52=132;ab=13米.
所以至少需13米长的梯子.
2、讲授新课:①、蚂蚁怎么走最近
出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆行柱的底面a点有一只蚂蚁,它想吃到上底面上与a点相对的b点处的食物,需要爬行的的最短路程是多少?(π的值取3).
(1)同学们可自己做一个圆柱,尝试从a点到b点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)
(2)如图,将圆柱侧面剪开展开成一个长方形,从a点到b点的最短路线是什么?你画对了吗?
(3)蚂蚁从a点出发,想吃到b点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)
我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线aa′将圆柱的侧面展开(如下图).
我们不难发现,刚才几位同学的走法:
(1)a→a′→b;(2)a→b′→b;
(3)a→d→b;(4)a—→b.
哪条路线是最短呢?你画对了吗?
第(4)条路线最短.因为“两点之间的连线中线段最短”.
②、做一做:教材14页。李叔叔随身只带卷尺检测ad,bc是否与底边ab垂直,也就是要检测∠dab=90°,∠cba=90°.连结bd或ac,也就是要检测△dab和△cba是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题.
③、随堂练习
出示投影片
1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午10∶00,甲、乙两人相距多远?
2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?
1.分析:首先我们需要根据题意将实际问题转化成数学模型.
解:(如图)根据题意,可知a是甲、乙的出发点,10∶00时甲到达b点,则ab=2×6=12(千米);乙到达c点,则ac=1×5=5(千米).
在rt△abc中,bc2=ac2+ab2=52+122=169=132,所以bc=13千米.即甲、乙两人相距13千米.
2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的a点处,铁棒最短时是垂直于底面时.
解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.
(1)x2=1.52+22,x2=6.25,x=2.5
所以最长是2.5+0.5=3(米).
(2)x=1.5,最短是1.5+0.5=2(米).
答:这根铁棒的长应在2~3米之间(包含2米、3米).
3.试一试(课本p15)
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
我们可以将这个实际问题转化成数学模型.
解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得
(x+1)2=x2+52,x2+2x+1=x2+25
解得x=12
则水池的深度为12尺,芦苇长13尺.
④、课时小结
这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型.
⑤、课后作业
课本p25、习题1.52
幂函数的教案篇5
一、教材分析
本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a
二、学情分析
本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标
(一)知识与能力目标
1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;
2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标
通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标
1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;
2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点
1.重点
通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2.难点
二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与 设计说明
本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程
教学环节(注明每个环节预设的时间)
(一)提出问题(约1分钟)
教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?
学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。
(二)探究新知
1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)
教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。
学生活动:讨论解决
目的:激发兴趣
2.配方求解顶点坐标和对称轴(约5分钟)
教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)
=0.5(x2-12x+36-36+42)
=0.5(x-6)2+3
教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。
学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。
目的:即加深对本课知识的认知有增强了配方法的应用意识。
3.画出该二次函数图像(约5分钟)
教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。
学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。
目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。
4.探究y=-2x2-4x+1的函数图像特点(约3分钟)
教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。
学生活动:学生独立完成。
目的:研究a
5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)
教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a
学生活动:仔细理解记忆一般式中的.顶点坐标、对称轴和开口方向;理解y随x的变化情况。
目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。
6.简单应用(约11分钟)
教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。
教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。
学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。
目的:巩固新知
课堂小结(2分钟)
1. 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?
2. 你对本节课有什么感想或疑惑?
布置作业(1分钟)
1. 教科书习题22.1第6,7两题;
2. 《课时练》本节内容。
板书设计
提出问题 画函数图像 学生板演练习
例题配方过程
到顶点式的配方过程 一般式相关知识点
教学反思
在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。
我认为优点主要包括:
1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。
2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
3.板书字体端正,格式清晰明了,突出重点、难点。
4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。
所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:
1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;
2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;
3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。
4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。
重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。
幂函数的教案篇6
一、基础知识回顾:
1、仰角、俯角 2、坡度、坡角
二、基础知识回顾:
1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,那么相邻两棵树间的斜坡距离为 米
2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆高度为 米(保留根号)
3、如图:b、c是河对岸的两点,a是对岸岸边一点,测得∠acb=450,bc=60米,则点a到bc的距离是 米。
3、如图所示:某地下车库的入口处有斜坡ab,其坡度i=1:1.5,
则ab= 。
三、典型例题:
例2、右图为住宅区内的两幢楼,它们的高ab=cd=30米,两楼间的距离ac=24米,现需了解甲楼对乙楼采光的影响,当太阳光与水平线的夹角为300时,求甲楼的影子在乙楼上有多高?
例2、如图所示:在湖边高出水面50米的山顶a处望见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志p处的仰角为450,又观其在湖中之像的俯角为600,试求飞艇离湖面的高度h米(观察时湖面处于平静状态)
例3、如图所示:某货船以20海里/时的速度将一批重要货物由a处运往正西方的b处,经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台风中心正以40海里/时的速度由a向北偏西600方向移动,距离台风中心200海里的圆形区域(包括边界)均会受到影响。
(1)问b处是否会受到台风的影响?请说明理由。
(2)为避免受到台风的影响,该船应该在多少小时内卸完货物?
(供选数据:=1.4 =1.7)
四、巩固提高:
1、 若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高 米。
2、如图:a市东偏北600方向一旅游景点m,在a市东偏北300的公路上向前行800米到达c处,测得m位于c的北偏西150,则景点m到公路ac的距离为 。(结果保留根号)
3、同一个圆的内接正方形和它的外切正方形的边长之比为( )
a、sin450 b、sin600 c、cos300 d、cos600
3、如图所示,梯子ab靠在墙上,梯子的底端a到墙根o的距离为2米,梯子的顶端b到地面的距离为7米,现将梯子的'底端a向外移动到a,使梯子的底端a到墙根o的距离等于3米,同时梯子的顶端b下降至b,那么bb( )(填序号)
a、等于1米b、大于1米c、小于1米
5、如图所示:某学校的教室a处东240米的o点处有一货物,经过o点沿北偏西600方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。
(1)通过计算说明,公路上车辆的噪音是否对学校造成影响?
(2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的长度(只考虑声音的直线传播)
幂函数的教案篇7
【知识与技能】
1.会用描点法画二次函数=ax2+bx+c的图象.
2.会用配方法求抛物线=ax2+bx+c的顶点坐标、开口方向、对称轴、随x的增减性.
3.能通过配方求出二次函数=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.
【过程与方法】
1.经历探索二次函数=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.
2.在学习=ax2+bx+c(a≠0)的`性质的过程中,渗透转化(化归)的思想.
【情感态度】
进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.
【教学重点】
①用配方法求=ax2+bx+c的顶点坐标;②会用描点法画=ax2+bx+c的图象并能说出图象的性质.
【教学难点】
能利用二次函数=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数=ax2+bx+c(a≠0)的图象.
一、情境导入,初步认识
请同学们完成下列问题.
1.把二次函数=-2x2+6x-1化成=a(x-h)2+的形式.
2.写出二次函数=-2x2+6x-1的开口方向,对称轴及顶点坐标.
3.画=-2x2+6x-1的图象.
4.抛物线=-2x2如何平移得到=-2x2+6x-1的图象.
5.二次函数=-2x2+6x-1的随x的增减性如何?
?教学说明】上述问题教师应放手引导学生逐一完成,从而领会=ax2+bx+c与=a(x-h)2+的转化过程.
二、思考探究,获取新知
探究1 如何画=ax2+bx+c图象,你可以归纳为哪几步?
学生回答、教师点评:
一般分为三步:
1.先用配方法求出=ax2+bx+c的对称轴和顶点坐标.
2.列表,描点,连线画出对称轴右边的部分图象.
3.利用对称点,画出对称轴左边的部分图象.
探究2 二次函数=ax2+bx+c图象的性质有哪些?你能试着归纳吗?
会计实习心得体会最新模板相关文章:
★ 故事中班教案7篇
★ 认位置教案7篇